Stationary Pattern of a Ratio-Dependent Food Chain Model with Diffusion

نویسندگان

  • Rui Peng
  • Junping Shi
  • Mingxin Wang
چکیده

In the paper, we investigate a three-species food chain model with diffusion and ratio-dependent predation functional response. We mainly focus on the coexistence of the three species. For this coupled reaction-diffusion system, we study the persistent property of the solution, the stability of the constant positive steady state solution, and the existence and nonexistence of nonconstant positive steady state solutions. Both the general stationary pattern and Turing pattern are observed as a result of diffusion. Our results also exhibit some interesting effects of diffusion and functional responses on pattern formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stationary Pattern of a Ratio-dependent Food Chain Model with Diffusion1

In the paper, we investigate a three-species food chain model with diffusion and ratio-dependent predation functional response. We mainly focus on the co-existence of the three species. For this coupled reaction-diffusion system, we study the persistent property of the solution, the stability of the constant positive steady state solution, and the existence and non-existence of non-constant pos...

متن کامل

DYNAMIC COMPLEXITY OF A THREE SPECIES COMPETITIVE FOOD CHAIN MODEL WITH INTER AND INTRA SPECIFIC COMPETITIONS

The present article deals with the inter specific competition and intra-specific competition among predator populations of a prey-dependent three component food chain model consisting of two competitive predator sharing one prey species as their food. The behaviour of the system near the biologically feasible equilibria is thoroughly analyzed. Boundedness and dissipativeness of the system are e...

متن کامل

Pattern Formation in Tri-Trophic Ratio-Dependent Food Chain Model

In this paper, a spatial tri-trophic food chain model with ratio-dependent Michaelis-Menten type functional response under homogeneous Neumann boundary conditions is studied. Conditions for Hopf and Turing bifurcation are derived. Sufficient conditions for the emergence of spatial patterns are obtained. The results of numerical simulations reveal the formation of labyrinth patterns and the coex...

متن کامل

Turing instability for a ratio-dependent predator-prey model with diffusion

Ratio-dependent predator-prey models have been increasingly favored by field ecologists where predator-prey interactions have to be taken into account the process of predation search. In this paper we study the conditions of the existence and stability properties of the equilibrium solutions in a reaction-diffusion model in which predator mortality is neither a constant nor an unbounded functio...

متن کامل

On the onset of triple-diffusive convection in a layer of nanofluid

On the onset of triple-diffusive convection in a horizontal layer of nanofluid heated from below and salted from above and below is studied both analytically and numerically. The effects of thermophoresis and Brownian diffusion parameters are also introduced through Buongiorno model in the governing equations. By using linear stability analysis based on perturbation theory and applying normal m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2007